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The deployment of autonomous robots in unstructured, cluttered environments
remains a significant challenge, particularly for low-cost platforms. While the
Dynamic Window Approach (DWA) provides a robust foundation for reactive
navigation, its performance is often suboptimal due to a lack of historical context,
leading to oscillatory behavior and entrapment in local minima. This paper
presents a novel, cost-effective mechatronic system that enhances DWA with a
real-time spatial memory module and optimizes its performance using a Bayesian
Optimization strategy. Our platform integrates a Raspberry Pi 4 with a fused
ultrasonic and infrared sensor suite. The core innovation is a Local Occupancy
History Map that provides a short-term, decaying memory of obstacle locations.
This memory influences the DWA’s trajectory evaluation, discouraging paths
through recently occupied space. Furthermore, we employ Bayesian
Optimization loop to automatically tune the critical hyperparameters of the
navigation system—the memory decay rate and the history weight—to maximize
efficiency and safety. We validate our system in complex indoor environments,
comparing the baseline DWA, the DWA with Spatial Memory (DWA-SM), and
the optimized DWA-SM (DWA-SM-Opt). Quantitative results demonstrate that
the optimized system (DWA-SM-Opt) achieves a 40% reduction in average path
completiontime and a 65% decrease in collisions compared to the baseline DWA.
Qualitative analysis confirms more intelligent, fluid navigation and consistent
escape from trapping configurations. Qualitative analysis confirms more
intelligent, fluid navigation and a consistent ability to escape trapping
configurations. This work establishes that the fusion of a lightweight spatial
memory with an Al-driven optimization routine, implemented on low-cost
hardware, can yield a level of performance previously associated with more
complex and expensive systems.

1. Introduction

The vision of autonomous

for resource-constrained

institutions.
robots seamlessly

research and educational

integrating into our daily lives, from sorting packages in
bustling warehouses to assisting the elderly in their
homes, hinges on their ability to navigate safely and
efficiently through unpredictable and cluttered spaces. A
failure in this fundamental capability can lead to
damaged goods, broken trust, or even personal injury,
thereby stalling widespread adoption. Consequently,
developing navigation systems that are not only robust
but also economically viable is critically important for
unlocking the next wave of robotic applications. Low-
cost solutions are particularly essential for scaling
deployments in small and medium-sized enterprises or
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Traditional robot navigation architectures separate
global planning, which requires a pre-existing map, from
local reactive control, which handles immediate
obstacles. While planners like A* or D* Lite are optimal
for known environments [1], they are ill-suited for
dynamic settings. This gap is filled by reactive obstacle
avoidance algorithms. The Dynamic Window Approach
(DWA) remains a cornerstone method due to its elegant
integration of the robot’s kinematic constraints [2]. By
evaluating only dynamically feasible velocities over a
short horizon, DWA guarantees safe and smooth
motion. However, its inherent limitation is a lack of
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memory; each decision is based solely on the current
sensor snapshot, ignoring valuable historical context.

Recent research has sought to move beyond purely
reactive paradigms. The integration of deep learning has
shown promise, with end-to-end networks learning
navigation policies directly from sensor data [3].
However, these “black-box” models require massive
datasets and substantial computational resources,
making them unsuitable for low-cost platforms.
Alternatively, more sophisticated local planners, such as
the Timed Elastic Band (TEB) method, optimize a full
trajectory over a longer time horizon, implicitly
considering past states [4]. While powerful, TEB can be
computationally intensive for complex environments
and may still suffer from local minima without a global
context. These approaches, though advanced, often
violate the low-cost and high-interpretability constraints
of many practical applications.

Simultaneous Localization and Mapping (SLAM)
offers the ultimate form of spatial memory by
constructing a consistent global map. Recent years have
seen efficient 2D SLAM implementations like Google’s
Cartographer [5] and lightweight 3D options like
RTAB-Map [6]. Yet, even these optimized algorithms
demand significant processing power and memory,
pushing the limits of low-end single-board computers.
Furthermore, for simple point-to-point navigation tasks
in environments where a prior map is unavailable or
unnecessary, the full complexity of SLAM—including
loop closure and pose graph optimization—can be
overkill. The robotics community needs a middle
ground: a navigation strategy that is more intelligent
than purely reactive methods but less demanding than
full SLAM.

This paper addresses this gap by presenting a novel,
low-cost mechatronic system that enhances the classic
DWA with a lightweight, real-time spatial memory
module. Our key insight is that for many navigation
tasks, a robot does not need a globally consistent map; it
merely needs to remember where obstacles were a few
seconds ago to make more informed decisions. We
implement this concept through a Local Occupancy
History Map, which acts as a short-term, decaying
memory of the robot’s surroundings. This module is
integrated into a low-cost hardware stack featuring a
Raspberry Pi 4 and a fused ultrasonic-infrared sensor
suite, demonstrating that significant performance
improvements are achievable without expensive sensors
or computers.

While demonstrated on a general-purpose robot, this
system is directly applicable to automotive contexts such
as low-cost autonomous guided vehicles (AGVS) in
warehouses, or minimalistic ADAS for urban navigation
in cluttered environments. The sensor suite and
computational constraints mirror those of entry-level
automotive platforms, suggesting transferability to
vehicle collision avoidance.
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The remainder of this paper is organized as follows;
Section 2 reviews recent literature in sensor-based
navigation and memory-augmented robotics. Section 3
details our methodology, including the mechatronic
design, sensor fusion, and the novel spatial memory
integration. Section 4 presents a comprehensive set of
experimental results and discusses their implications.
Finally, Section 5 concludes the paper, summarizing our
findings and outlining promising future research
directions.

2. Literature Review

The past five years have seen significant
advancements in obstacle avoidance, particularly with
the rise of machine learning and more sophisticated
sensor fusion techniques. A prevalent trend involves
replacing traditional geometric models with learned
ones. For instance, deep reinforcement learning (DRL)
has been widely applied to learn complex navigation
policies in simulation [3],[7]. These methods can
exhibit human-like negotiation behaviors in dynamic
crowds. However, a significant challenge, known as the
sim-to-real gap, often hinders their deployment on
physical low-cost robots, which may lack the precise
actuators and sensors assumed in simulation.
Furthermore, the inference load of large neural
networks can be prohibitive for embedded systems.

Efforts to make learning-based methods more
efficient are ongoing. Research has focused on
developing lightweight neural network architectures for
navigation that can run on edge devices [8]. These
approaches often use camera-based inputs, which are
low-cost but computationally demanding for
processing, and their performance can be sensitive to
lighting conditions. In contrast, our work prioritizes
deterministic performance and low computational
overhead by building upon the well-understood and
efficient DWA framework, enhancing it with a simple
yet effective memory mechanism.

Concurrently, developments in traditional local
planners have continued. The Timed Elastic Band
(TEB) approach remains a popular and powerful choice
within the ROS ecosystem due to its ability to optimize
trajectories with respect to time [4]. Recent works have
extended TEB to better handle kinematic constraints
and dynamic obstacles [9]. However, the computational
cost of the underlying optimization problem can spike
in very cluttered environments, potentially challenging
the real-time performance on a single-board computer.
Our approach is complementary; by providing a richer
historical context to a simpler planner like DWA, we
achieve some of the foresight benefits of TEB with a
lower and more predictable computational footprint.

In the realm of mapping and memory, the field has
evolved beyond monolithic SLAM systems. The
concept of “local mapping” or “egocentric spatial
memory” has gained traction for tasks like long-term
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autonomy and lifelong learning [10]. These systems
often maintain a locally consistent map around the robot
that is updated over time. Our Local Occupancy History
Map is a minimalist interpretation of this concept,
designed not for long-term consistency but for short-
term tactical advantage. It is most similar to the idea of
a “hysteresis” or “inhibition of return” in navigation,
which has been explored in bio-inspired robotics [11].
However, our implementation as a decaying cost grid
that directly integrates with DWA’s evaluation function
is a novel and practical contribution.

Recent studies have also explored the use of low-
cost sensor suites. The fusion of ultrasonic and infrared
sensors has been demonstrated for basic obstacle
avoidance [12], and the use of low-cost IMUs and wheel
encoders for odometry is well-established [13]. Our
work builds directly on these pragmatic mechatronic
principles. Furthermore, the performance of algorithms
on resource-constrained hardware is a key research
area. Studies have benchmarked various SLAM
algorithms on single-board computers, confirming the
trade-offs between accuracy and computational load
[14]. This body of work validates our design choice to
avoid full SLAM and instead pursue a minimal memory
augmentation. Finally, the need for robust navigation in
specific applications like agricultural robotics [15]
underscores the universal demand for the kind of
reliable, low-cost system we present here.

While memory-augmented navigation exists in bio-
inspired robotics [11] and local mapping [10], our
approach uniquely employs a decaying occupancy
history specifically designed for low-cost hardware,
providing tactical memory without computational
overhead. The decaying mechanism ensures temporal
relevance - old information fades naturally, preventing
outdated data from misleading navigation decisions.
This minimalist implementation provides the "just
enough memory" principle and distinguishes it from
complex neural models or persistent maps [12][13]. The
methodology has direct relevance to automotive
applications like warehouse AGVs and entry-level
ADAS systems, where cost-effective collision
avoidance in cluttered spaces is critical. Demonstrating
robust navigation with frugal sensors (ultrasonic/IR)
addresses the economic constraints of scalable
automotive safety solutions.

Compared to lightweight neural navigators [8], our
method offers deterministic performance and lower
inference latency. Unlike optimized SLAM systems
[14], our approach avoids global consistency overhead,
favoring real-time local navigation.

3. Methodology
3.1. Mechatronic System Design

The physical embodiment of our approach is a
custom differential drive robot, designed for agility and
low cost. The central processing unit is a Raspberry Pi 4
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Model B with 4GB of RAM. This device was selected
for its robust community support, sufficient processing
power for our algorithms, and its low power
consumption. The robot runs Ubuntu 22.04 and ROS 2
Humble Hawksbill, which provides a modern
framework for distributed communication and package
management.

The actuation subsystem consists of two DC geared
motors with integrated Hall-effect encoders, controlled
by a DRV8833 motor driver. The encoder feedback,
sampled at 50 Hz, provides odometry data which is
fused with data from a low-cost GY-521 MPU-6050
IMU (Inertial Measurement Unit) using an extended
Kalman filter (EKF). This sensor fusion, implemented
via the robot_localization ROS package, provides a
more robust estimate of the robot’s pose and velocity
than wheel odometry alone, which is crucial for accurate
trajectory simulation in DWA [13].

The perception system is a strategically designed
heterogeneous suite:

¢ Ultrasonic Sensors (HC-SR04): Two of these sensors
are mounted on the front of the robot at
approximately 50°. They provide long-range
detection (2-400 cm) and are effective for early
warning of large obstacles. Their wide beam angle
(~15 degrees) is useful for covering broad areas but
lacks precision.

o |Infrared Proximity Sensors (Sharp
GP2Y0A41SKOF): Three of these sensors are
placed on the left, center, and right flanks. They
offer precise, short-range (4-30 cm) measurements
with a very narrow beam, making them ideal for
detecting fine features like table legs and for
validating close-range obstacles, complementing
the ultrasonic sensors’ weaknesses.

The proposed system is a cohesive integration of
mechatronic hardware, a novel spatial memory
algorithm, and an Al-based optimization layer. The
overall pipeline is depicted in Figure 1 and described in
detail in the following subsections.

| Sensor Suite I I Fusion

| Bayesian Opt Enhanced DWA

-

| Performance Evaluator

Figure 1. System Methodology Pipeline
The pipeline operates in two modes: Optimization

and Deployment. In the Optimization Mode (dashed
line), the Bayesian Optimization agent acts as an Al “co-
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pilot.” It proposes a set of hyperparameters (A, d) for the
DWA-SM controller. The robot then executes a
navigation task in a standardized test environment. The
Performance Evaluator measures the outcome (e.g., a
weighted sum of completion time and collisions) and
reports this score back to the Bayesian Optimizer. The
optimizer uses this feedback to intelligently propose a
better set of parameters in the next iteration, gradually
converging on the optimal configuration. In the
Deployment Mode, the optimized parameters are fixed,
and the robot operates autonomously using the refined
DWA-SM controller for its designated tasks.

All sensors are connected directly to the Raspberry
Pi’s GPIO, and a dedicated ROS 2 node written in C++
manages the low-level communication, publishing
timestamped sensor_msgs/msg/Range messages. Figure
2 shows how the sensors were assembled onto the robot.

3.2. Sensor Fusion and Local Costmap

To create a unified representation of the immediate
environment, data from all five sensors are fused into a
local costmap. The costmap is a 2D occupancy grid (4x4
meters, 5cm resolution) centered on the robot. Each
sensor reading is projected into this grid based on the
robot’s current estimated pose from the EKF. Ultrasonic
sensors are susceptible to specular reflections and
acoustic noise, while IR sensors are sensitive to ambient
light and surface reflectivity. Our fusion approach
mitigates these by cross-validating detections across
sensor types, though transient artifacts may still occur.

Figure 2. Sensor assembly on the robot. Two HC-SR04
ultrasonic sensors arranged in triangular configuration
of 50° for enhanced obstacle detection and the infrared

sensors for proximity and line-following capabilities. The

arrangement ensures comprehensive environment

mapping.

An Inflation layer is applied around detected
obstacles. The cell at the detected point is assigned a
lethal cost (100), and surrounding cells receive a
decayed cost based on a quadratic function of distance.
This models the robot’s physical footprint, ensuring it
maintains a safe clearance. This real-time costmap,
updated at 10 Hz, serves as the primary environmental
input for the navigation stack. The fusion of ultrasonic
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and IR data creates a more complete and reliable picture
than either sensor could provide alone [12]

3.3. Baseline Dynamic Window Approach

We implemented a standard DWA local planner as
our performance baseline. The algorithm operates
cyclically as follows:

1. Generate Velocity Samples: It discretizes the
space of possible (v, ) pairs, where v is linear velocity
and o is angular velocity. It then filters this set to retain
only velocities that are dynamically achievable within a
short time window (~0.5s), considering the robot’s
acceleration limits.

2. Simulate Trajectories: For each admissible (v, ®)
pair, it simulates the resulting trajectory for a global
planning period (~1.5-2.0s).

3. Evaluate Trajectories: Each trajectory is scored by
an objective function, G(v, ®):

G(v, ®) = o(a - Heading(v,m) + B - Clearance(v,®) +
v - Velocity(v,))
1)

Where Heading measures alignment to the goal,
Clearance is the minimum distance to an obstacle on the
trajectory (from the live costmap), Velocity promotes
progress, and ¢ is a smoothing function. The weights (a,
B, v) are tuned for performance.

4, Issue Command: The (v, o) pair with the highest
score is sent to the motor controller.

This baseline is reactive and effective for immediate
obstacle avoidance but suffers from the myopic
behaviors we aim to solve.

3.4. Novel Integration of Spatial Memory

The core contribution is the enhancement of DWA
with a Local Occupancy History Map. This is a separate
occupancy grid, identical in size and resolution to the
DWA’s local costmap, but with a different update logic
that introduces temporal persistence.

e Memory Dynamics: When the live costmap is
updated, the corresponding cells in the history map
are set to a maximum value (e.g., 100). However,
instead of being cleared when a sensor no longer
detects an obstacle, the values in the history map
decay exponentially every control cycle. The
update rule is:

H t[x,y] = max( L _t[x,y], 2 -H_{t-1}[x,y] ) 2

Where H_t is the history map at time t, L_t is the live
costmap, and A is a decay factor (0.9 in our
experiments). This creates a “fading echo” of past
obstacle detections. A decay factor of A=0.9 was
selected based on preliminary trials to balance memory
persistence with responsiveness, ensuring obstacles are
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remembered for approximately 5-10 seconds, which

aligns with typical navigation decision cycles.

e Informed Trajectory Evaluation: The history map is
integrated by modifying the DWA objective
function:

G, w = o Heading(v,w) + f
Clearance Current(v,w) + 0 - Clearance History(v,w)
+y - Velocity(v,w)) 3)

The new term, Clearance History(v,), is the minimum

distance to any cell with a non-zero cost in the history

map along the simulated trajectory. The weight 6

controls the robot’s aversion to recently occupied space.

This mechanism yields intelligent behaviors:

e Escape from Local Minima: In a U-shaped trap, the
history of the entrance persists. When the robot
considers reversing, the high historical cost of the
entrance makes that trajectory less attractive than
following the inner wall, guiding it to the exit.

e Smoother Navigation: In corridors, the persistent
memory of both walls provides a stable repulsive
field, damping oscillations and promoting centered,
smooth motion.

e Efficient Exploration: In clutter, the robot is
discouraged from re-entering areas it just left,
pushing it to explore new free space more
efficiently.

This approach is computationally cheap, adding only
the overhead of maintaining and querying a second grid,

which is negligible for a Raspberry Pi 4.

3.5. Al-Driven Parameter Optimization using
Bayesian Optimization

The performance of the DWA-SM system is highly
sensitive to the choice of two key hyperparameters: the
memory decay factor (A) and the history weight (J).
Manually tuning these parameters is a time-consuming
and subjective process. To automate this and achieve
peak performance, we implemented a Bayesian
Optimization (BO) routine using a Python-based Al
agent.

Bayesian Optimization is a machine learning-based
technique for finding the global optimum of a black-box
function with minimal evaluations. It is ideal for this
task because evaluating a parameter set requires a full
robot test run, which is computationally "expensive" in
terms of time.

Our implementation uses the scikit-optimize library
in Python. The process is as follows:

1. Objective Function: We define an objective
function f(A, 8) that the BO aims to minimize. This
function is a weighted combination of normalized
performance metrics from a standardized test run:

1° Wampamba et al.

f, 6) =wl * (Normalized_Time) + w2 *
(Normalized_Path_Length) + w3 *
(Normalized_Collisions) 4)

where wl + w2 + w3 = 1. We heavily weighted w3
(collisions) to prioritize safety.

2. Surrogate Model: A Gaussian Process (GP) model
is used as a surrogate to model the unknown
objective function based on the parameters tried and
their resulting scores.

3. Acquisition Function: An acquisition function (e.g.,
Expected Improvement), guided by the GP model,
suggests the next most promising parameter set (A,
d) to evaluate, balancing exploration of uncertain
regions and exploitation of known good regions.

4. lterative Optimization: The loop (Figure 1) runs for
a fixed number of iterations (e.g., 50). The Al agent
proposes parameters, the robot tests them, and the
result updates the GP model. After convergence, the
best-performing parameters (A _opt, & opt) are
extracted for deployment.

This Al-driven approach systematically finds a robust
parameter set that maximizes navigation performance,
moving beyond heuristic tuning.

4. Results And Discussion

We evaluated our system in three challenging indoor
environments, comparing the baseline DWA against our
enhanced DWA with Spatial Memory (DWA-SM).
Each scenario was run 10 times per algorithm, and key
metrics were recorded.

4.1. Experimental Setup and Metrics
The test environments were:

1.  Dense Clutter: An area with multiple obstacles
creating a complex maze-like structure.

2. Narrow Passage: A 1.2m wide corridor with a
sharp turn.

3. Classic U-Trap: A
enclosure.

symmetric U-shaped

Performance was measured using:
e Task Completion Time (s)

e Total Path Length (m)

e Number of Collisions

o Number of Near-Misses (robot within 0.1m of
an obstacle)

4.2. Quantitative Analysis

The aggregated results for the Dense Clutter scenario
are presented in Table |. The progressive improvement
from Baseline to DWA-SM to DWA-SM-Opt is clear.

Automotive Science and Engineering (ASE) 4891
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Table 1. Performance in dense clutter
(Average of 10 runs)

Metric Baseline DWA DWA + %
Spatial Improvement
Memory

Completion 784 533 32.0%

time (s)

Path Length 11.8 8.9 24.6%

(m)

Collisions 45 2.0 55.6%

Near-Misses  22.1 9.9 55.2%

The DWA-SM-Opt configuration outperformed both
others, achieving a 40% faster completion time and 64%
fewer collisions than the baseline. It also showed a
meaningful improvement over the manually tuned
DWA-SM, validating the effectiveness of the Bayesian
Optimization as shown in Figure 2 and Figure 3. Please
note that the 40%-time reduction and 65% collision
reduction refer to DWA-SM-Opt, not the baseline or
non-optimized version.

os Figure 2: Bayesian Optimization Convergence

2

n
T

Objective Function Value

o
w

o

o 5 10 15 20 30 35 40 45 s0

25
Iteration Numbser

Figure 2. Bayesian Optimization Convergence. This plot
shows the objective function value (lower is better) over
50 iterations. The best-found score decreases rapidly in
the first 15 iterations and then plateaus, indicating
convergence. The "best observed™ curve shows the
optimizer's progressive discovery of better parameters

Figure 3: Hyperparameter Search Space

History Weight (5]

Figure 3. Hyperparameter Search Space. A contour plot
showing the objective function value across different
combinations of A and 6. The red 'X' marks the optimal
point found by the BO, which lies in a region that might
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be non-intuitive for a human designer (e.g., a moderately
high decay rate coupled with a strong history weight)

4.3.Qualitative Behavioral Analysis

The trajectory plots revealed stark differences. In
the Dense Clutter, the baseline DWA path was erratic,
with numerous loops and reversals. The DWA-SM path
was notably smoother and more direct, showing a clear
intent to move through free space without backtracking.

In the Narrow Passage, the baseline robot exhibited
severe oscillatory behavior, constantly correcting its
orientation. The DWA-SM robot, stabilized by the
persistent memory of the walls, navigated the corridor
with a smooth, confident trajectory, closely mimicking
a human driver’s path.

In the U-Trap, the result was definitive. The
baseline DWA failed to escape in 9 out of 10 trials,
oscillating indefinitely at the trap’s center. The DWA-
SM robot successfully escaped in all 10 trials, using its
memory of the entrance to break the symmetry and
follow a wall out of the trap. This single behavior alone
validates the utility of the spatial memory module.

4.4.System Performance and Limitations

The entire software stack ran reliably on the
Raspberry Pi 4, with the main navigation node
consuming approximately 45% of the CPU across all
four cores. The spatial memory module added less than
5% to the CPU load, confirming its lightweight nature.

The system's performance Is sensitive to the
parameters A (decay factor) and 6 (history weight). We
found 2=0.9 and 6=0.7 provided a good balance for our
static environments. In highly dynamic environments
with moving people, a faster decay (A ~ 0.8) might be
necessary to avoid being influenced by outdated data.
Future work could involve adaptive parameter tuning.
Furthermore, while the sensor fusion is robust, the
ultrasonic sensors remain susceptible to acoustic noise
and specular reflections, which can cause transient
artifacts in the history map. The exponential decay
naturally filters these out over a few cycles.

4.5.Qualitative Behavioral Analysis

Figure 4 shows the trajectory comparison in U-Trap.
This figure overlays the robot's paths for the three
configurations in the U-shaped trap.

e Baseline DWA (Red): Shows a tight, looping
pattern in the center of the trap, indicating
perpetual oscillation and failure to escape.

o DWA-SM-Opt (Green): Shows the most
efficient escape. The robot approaches the trap,
uses its optimized memory to immediately
reject the reversing trajectory, and commits
smoothly to a wall-following path that leads
directly to the exit.
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The behavioral analysis confirmed that the optimized
system not only performs better quantitatively but also
produces more decisive and “intelligent-looking"
navigation strategies.

as Figure 4: Trajectory Comparison in U-Trap
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Figure 4. Trajectory Comparison in U-Trap

4.6 System Performance and Limitations

The Bayesian Optimization process, while run
offline, was highly efficient, converging to a robust
solution in 50 iterations. The entire navigation stack,
including the spatial memory, ran in real-time on the
Raspberry Pi 4. The main limitation remains the static
environment assumption during optimization; the tuned
parameters (A _opt, & opt) are optimal for the test
environment but may need re-optimization for
drastically different settings (e.g., highly dynamic
spaces). Future work will involve training and validating
across multiple environment types to find a generalized
robust parameter set.

Fig. 5 presents a comprehensive quantitative
analysis of the three navigation algorithms tested in this
study. The four subplots provide distinct yet
complementary views of performance:

e Subplot (a), Task Completion Time, shows the
significant time reduction achieved by the
optimized algorithm. Indicates more decisive
navigation and fewer oscillatory behaviors.

e Subplot (b), Total Path Length, demonstrates
increasingly efficient and direct paths to the
goal. Confirms the spatial memory prevents
detours and backtracking.

e Subplot (c), Number of Collisions, is a critical
safety metric. Highlights a substantial
improvement in robot safety. The memory acts
as a predictive buffer to avoid obstacles

e Subplot (d), Navigation Efficiency Score, is a
composite metric Presents a composite metric
of overall performance. The optimized system
achieves a near-perfect score, confirming its
robustness.

1° Wampamba et al.

Figure 5: Performance Metrics Comparison
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Figure 5. Comparative performance evaluation of
navigation algorithms across four key metrics: (a) Task
Completion Time, (b) Total Path Length, (c) Number of

Collisions, and (d) Navigation Efficiency Score. The
algorithms compared are the Baseline Dynamic Window
Approach (DWA), DWA with Spatial Memory (DWA-
SM), and the optimized DWA-SM with Bayesian
Optimization (DWA-SM-Opt)

Collectively, the data in Figure 5 provides
compelling evidence that the proposed low-cost
mechatronic system, enhanced with spatial memory and
optimized parameters, achieves superior performance in
cluttered environments compared to the standard
reactive navigation approach

5. Conclusion

This paper has presented a comprehensive low-cost
navigation system that successfully integrates a novel
spatial memory algorithm with an Al-based
optimization framework. We have demonstrated that
augmenting the DWA with a Local Occupancy History
Map significantly improves navigation efficiency and
safety. Furthermore, we have shown that using Bayesian
Optimization to automate the tuning of critical
hyperparameters yields an additional, significant
performance gain, pushing the capabilities of a low-cost
platform closer to that of more advanced systems.

The key takeaway is that intelligent autonomy on a
budget is achievable not just through algorithmic
innovation, but also through the smart application of Al-
driven design optimization. The methodology pipeline
we presented—from sensor fusion to enhanced planning
to automated tuning—provides a blueprint for
developing high-performance, low-cost robotic systems.

Future work will focus on developing adaptive
controllers that can dynamically adjust A and & online
based on real-time environmental complexity. We also
plan to extend the optimization objective to include
power consumption and to explore multi-task
optimization where a single parameter set is optimized
for performance across a diverse set of environments.
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